136 research outputs found

    The Really Good Buffalo Project: A ‘Values Added’ Product

    Get PDF
    For several years, an effort to ‘bring back the buffalo’ has been of key interest in many American Indian communities across the country, and particularly in the Northern Plains of the United States. Tribal college faculty approached colleagues at South Dakota State University during a meeting of the American Indian Higher Education Consortium (AIHEC) with the desire to develop a niche market for Native American-raised bison. The Lakota words for the concept underlying the effort are Tatanka Waste (pronounced Ta-TONK-a Wash-TAY), roughly translated as ‘Really Good Buffalo’. A pivotal factor that influenced the development of the Really Good Buffalo project was the unique historical, cultural, and spiritual relationship between American Indians and bison. These issues and the diverse consortium of partners involved made it critically important that the project deliberately address values as part of the niche market analysis. As one tribal partner stated, “Great care must be taken when we are working with our brothers, the buffalo.” This case emphasizes the process of concept-testing, pre-feasibility analysis, and branding of an agriculturally based niche product within a broader cultural context.(Contact author for a copy of the complete report.)Bison Production, Cultural Values

    “2+2+2” COLLABORATION ADDS UP TO SUCCESS FOR AMERICAN INDIAN STUDENTS

    Get PDF
    Various governmental, political and community leaders have called for a model which fosters collabo¬ration between high schools, tribal colleges and state universities which will help Native students over¬come barriers and complete their higher education. South Dakota\u27s 2+2+2 program provides such a model

    Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke

    Get PDF
    BACKGROUND: The presence of abnormal muscle activation patterns is a well documented factor limiting the motor rehabilitation of patients following stroke. These abnormal muscle activation patterns, or synergies, have previously been quantified in the upper limbs. Presented here are the lower limb joint torque patterns measured in a standing position of sixteen chronic hemiparetic stroke subjects and sixteen age matched controls used to examine differences in strength and coordination between the two groups. METHODS: With the trunk stabilized, stroke subjects stood on their unaffected leg while their affected foot was attached to a 6-degree of freedom load cell (JR3, Woodland CA) which recorded forces and torques. The subjects were asked to generate a maximum torque about a given joint (hip abduction/adduction; hip, knee, and ankle flexion/extension) and provided feedback of the torque they generated for that primary joint axis. In parallel, EMG data from eight muscle groups were recorded, and secondary torques generated about the adjacent joints were calculated. Differences in mean primary torque, secondary torque, and EMG data were compared using a single factor ANOVA. RESULTS: The stroke group was significantly weaker in six of the eight directions tested. Analysis of the secondary torques showed that the control and stroke subjects used similar strategies to generate maximum torques during seven of the eight joint movements tested. The only time a different strategy was used was during maximal hip abduction exertions where stroke subjects tended to flex instead of extend their hip, which was consistent with the classically defined "flexion synergy." The EMG data of the stroke group was different than the control group in that there was a strong presence of co-contraction of antagonistic muscle groups, especially during ankle flexion and ankle and knee extension. CONCLUSION: The results of this study indicate that in a standing position stroke subjects are significantly weaker in their affected leg when compared to age-matched controls, yet showed little evidence of the classic lower-limb abnormal synergy patterns previously reported. The findings here suggest that the primary contributor to isometric lower limb motor deficits in chronic stroke subjects is weakness

    Prevalence of preterm, low birthweight, and small for gestational age delivery after breast cancer diagnosis: a population-based study

    Get PDF
    Abstract Background Black-white disparities in breast cancer incidence rates and birth outcomes raise concerns about potential disparities in the reproductive health of premenopausal breast cancer survivors. We examined the prevalence of preterm birth (PTB), low birthweight (LBW), and small for gestational age (SGA) by breast cancer history and effect modification by race. Methods We analyzed linked North Carolina birth records and Central Cancer Registry files from 1990 to 2009 (n = 2,325,229). We used multivariable negative log-binomial regression to calculate prevalence ratios (PRs) and 95% confidence intervals (CIs) for the association between breast cancer history and PTB, LBW, and SGA. Results Of 1,912,269 eligible births, 512 births were to mothers with a previous breast cancer diagnosis history. Average age at breast cancer diagnosis was 31.8 years (SD = 4.7). Mean time from diagnosis to delivery was 3.3 years (SD = 2.8). After multivariable adjustment, the PR was 1.67 (95% CI, 1.42–1.97) for PTB, 1.50 (95% CI, 1.23–1.84) for LBW, and 1.30 (95% CI, 1.05–1.61) for SGA comparing women with a breast cancer history to the general population. Among black mothers, the PRs associated with breast cancer history for PTB, LBW, and SGA were 1.31 (95% CI, 1.00–1.72), 1.49 (95% CI, 1.14–1.94), and 1.44 (95% CI, 1.11–1.87), respectively. The corresponding PRs among white mothers were 2.06 (95% CI, 1.67–2.54), 1.53 (95% CI, 1.12–2.08), and 1.10 (95% CI, 0.77–1.58), respectively. The interaction between breast cancer history and race was statistically significant for associations with PTB, but not for LBW or SGA. Conclusions In our data, women with a breast cancer history were at higher risk of delivering a PTB, LBW, or SGA infant, especially if they received chemotherapy or gave birth within 2 years of their breast cancer diagnosis date

    APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer\u27s Disease

    Get PDF
    Prior work suggests that amyloid precursor protein (APP) can function as a proinflammatory receptor on immune cells, such as monocytes and microglia. Therefore, we hypothesized that APP serves this function in microglia during Alzheimer\u27s disease. Although fibrillar amyloid β (Aβ)-stimulated cytokine secretion from both wild-type and APP knock-out (mAPP−/−) microglial cultures, oligomeric Aβ was unable to stimulate increased secretion from mAPP−/− cells. This was consistent with an ability of oligomeric Aβ to bind APP. Similarly, intracerebroventricular infusions of oligomeric Aβ produced less microgliosis in mAPP−/− mice compared with wild-type mice. The mAPP−/− mice crossed to an APP/PS1 transgenic mouse line demonstrated reduced microgliosis and cytokine levels and improved memory compared with wild-type mice despite robust fibrillar Aβ plaque deposition. These data define a novel function for microglial APP in regulating their ability to acquire a proinflammatory phenotype during disease. SIGNIFICANCE STATEMENT A hallmark of Alzheimer\u27s disease (AD) brains is the accumulation of amyloid β (Aβ) peptide within plaques robustly invested with reactive microglia. This supports the notion that Aβ stimulation of microglial activation is one source of brain inflammatory changes during disease. Aβ is a cleavage product of the ubiquitously expressed amyloid precursor protein (APP) and is able to self-associate into a wide variety of differently sized and structurally distinct multimers. In this study, we demonstrate both in vitro and in vivo that nonfibrillar, oligomeric forms of Aβ are able to interact with the parent APP protein to stimulate microglial activation. This provides a mechanism by which metabolism of APP results in possible autocrine or paracrine Aβ production to drive the microgliosis associated with AD brains
    corecore